Btuh $=g p m \times 500 \times T D$

Calculation required to make concentration adjustments

If the glycol concentration needs to be increased use the following formula:

$$
A=V(D-C) / 100-C
$$

Where:
$A=$ Quantity of concentrate to add.
$V=$ Volume capacity of the system.
$D=$ Desired concentration.
$\mathrm{C}=$ Current concentration.
Example: your customer has a 3,000 gallon system with a current concentration of 35% and wants to increase his/her freeze protection to $50 \%\left(-34^{\circ} \mathrm{F}\right)$. How much concentrate will be needed?

$$
\begin{gathered}
A=3,000(50-35) / 100-35 \\
A=3,000(15) / 65 \\
A=45,000 / 65
\end{gathered}
$$

$A=692.31$ gallons (amount of fluid to drain and the amount of concentrate required to achieve the desired concentration).

If the glycol concentration needs to be decreased use the following formula:

$$
A=V(C-D) / C
$$

Where:
A= Quantity of deionized water to add.
$V=$ Volume capacity of the system.
$D=$ Desired concentration.
$\mathrm{C}=$ Current concentration.
Example: your customer has a 3,000 gallon system (propylene glycol) with a current concentration of 50% and wants to decrease his/her freeze protection to $35 \%\left(-5^{\circ} \mathrm{F}\right)$. How much water will be required?

$$
\begin{gathered}
A=3,000(50-35) / 50 \\
A=3,000(15) / 50 \\
A=45,000 / 50
\end{gathered}
$$

$A=900$ gallons (amount of fluid to drain and the amount of concentrate required to achieve the desired concentration).

